Login / Signup

Interacting partners of Brassica juncea regulator of G-protein signaling protein suggest its role in cell wall metabolism and cellular signaling.

Roshan KumarNaveen Chandra Bisht
Published in: Bioscience reports (2022)
Heterotrimeric G-proteins interact with various upstream and downstream effectors to regulate various aspects of plant growth and development. G-protein effectors have been recently reported in Arabidopsis thaliana; however, less information is available from polyploid crop species having complex networks of G-protein components. Regulator of G-protein signaling (RGS) is a well-characterized GTPase accelerating protein, which plays an important role in the regulation of the G-protein cycle in plants. In the present study, four homologs encoding RGS proteins were isolated from the allotetraploid Brassica juncea, a globally important oilseed, vegetable, and condiment crop. The B. juncea RGS proteins were grouped into distinct BjuRGS1 and BjuRGS2 orthologous clades, and the expression of BjuRGS1 homologs was predominantly higher than BjuRGS2 homologs across the tested tissue types of B. juncea. Utilizing B. juncea Y2H library screening, a total of 30 nonredundant interacting proteins with the RGS-domain of the highly expressed BjuA.RGS1 was identified. Gene ontology analysis indicated that these effectors exerted various molecular, cellular, and physiological functions. Many of them were known to regulate cell wall metabolism (BjuEXP6, Bju-α-MAN, BjuPGU4, BjuRMS3) and phosphorylation-mediated cell signaling (BjuMEK4, BjuDGK3, and BjuKinase). Furthermore, transcript analysis indicated that the identified interacting proteins have a coexpression pattern with the BjuRGS homologs. These findings increase our knowledge about the novel targets of G-protein components from a globally cultivated Brassica crop and provide an important resource for developing a plant G-protein interactome network.
Keyphrases