Login / Signup

Effects of blood and root-dentin cleaning on the porosity and bond strength of a collagen bioceramic material.

F M SaltareliLarissa Moreira Spinola de Castro RaucciC E S MirandaN C Tavella-SilvaI R OliveiraWalter Raucci Neto
Published in: Brazilian dental journal (2024)
To assess the effect of cleaning protocols on dentin contaminated with blood in reparative endodontic materials, bovine root samples were divided: no contamination (N); contamination (P); contamination and cleaning with saline (S), 2.5% NaOCl+saline (Na) or 2.5% NaOCl+17% EDTA+saline (NaE) and filled with: mineral trioxide aggregate (MTA), calcium-aluminate-cement (C), or C+collagen (Ccol) (n=13). The samples were evaluated for porosity, chemical composition, and bond strength. MTA porosity was lower than C (p=0.02) and higher than Ccol (p<0.001). P and NaE were similar (p=1.00), but higher than the other groups (p<0.001). MTA bond strength was similar to Ccol (p=0.777) and lower than C (p=0.028). P presented lower bond strength than the N (p<0.001); S and Na were similar to each other (p=0.969), but higher than P and lower than N (p<0.001). It was observed a predominance of mixed and cohesive failures. None of the samples showed Ca/P ratio values similar to human hydroxyapatite. This study showed that contamination with blood increased the materials porosity, but dentin cleaning with 2.5% NaOCl reduced this effect, and the collagen additive reduced the material porosity. Furthermore, blood contamination reduced the materials bond strength, and cleaning with saline or 2.5% NaOCl diminished this effect.
Keyphrases
  • drinking water
  • risk assessment
  • health risk
  • heavy metals
  • endothelial cells
  • tissue engineering
  • protein kinase