Login / Signup

High Temperature Accelerated Stone-Wales Transformation and the Threshold Temperature of IPR-C60 Formation.

Izaac MitchellLu QiuLowell D LambFeng Ding
Published in: The journal of physical chemistry. A (2021)
The Stone-Wales bond rotation isomerization of nonicosahedral C60 (C2v-C60) into isolated-pentagon rule following icosahedral C60 (Ih-C60 or IPR-C60) is a limiting step in the synthesis of Ih-C60. However, extensive previous studies indicate that the potential energy barrier of the Stone-Wales bond rotation is between 6 and 8 eV, extremely high to allow for bond rotation at the temperatures used to produce fullerenes conventionally. This is also despite data indicating a possible fullerene road mechanism that necessitates low-temperature annealing. However, these previous investigations often have limiting factors, such as using the harmonic approximation to determine free energies at high temperatures or considering only the reverse Ih-C60 to C2v-C60 transition as a basis. Indeed, when the difference in energy between Ih-C60 and C2v-C60 is accounted for, this barrier is generally reduced by ∼1.5 eV. Thus, utilizing the recently developed density functional tight binding metadynamics (DFTB-MTD) interface, the effects of temperature on the bond rotation in the conversion of C2v-C60 to Ih-C60 have been investigated. We found that Stone-Wales bond rotations are complex processes with both in-plane and out-of-plane transition states, and which transition path dominates depends on temperature. Our results clearly show that at temperatures of 2000 K, the free energy for a C2v-C60 to Ih-C60 transition is only ∼4.21 eV and further reduces to ∼3.77 eV at 3000 K. This translates to transition times of ∼971 μs at 2000 K and ∼34 ns at 3000 K, indicating that defect healing is a fast process at temperatures typical of arc jet or laser ablation experiments. Conversely, below ∼2000 K, bond rotation becomes prohibitively slow, putting a lower threshold limit on the temperature of fullerene formation and subsequent annealing.
Keyphrases