Login / Signup

One-Step Solvothermal Synthesis of Raspberry-like NiCo-MOF for High-Performance Flexible Supercapacitors for a Wide Operation Temperature Range.

Wenjing ZhangZohreh ShahnavazXuehua YanXinpeng HuangSutang WuHao ChenJianmei PanTie LiJiapeng Wang
Published in: Inorganic chemistry (2022)
As a novel electrode material for energy storage, metal-organic frameworks (MOFs) emerge with plenty of merits and certain drawbacks in the field of supercapacitors. Nevertheless, most MOFs synthesized for the moment are faced with dimension/distribution issues and dissatisfactory electrical conductivity. Hence, in this paper, NiCo-MOF was successfully fabricated by applying a one-step solvothermal method, from which NiCo-MOF-3 presents an optimal electrochemical performance compared to other NiCo-MOFs and Ni/Co-MOF. Owing to its unique three-dimensional spherical raspberry structure, NiCo-MOF-3 demonstrates an available internal resistance and electron transfer resistance to ameliorate electrical energy storage, exhibiting an excellent mass specific capacitance of 639.8 F/g at 1 A/g. Then, a flexible quasi-solid-state asymmetric supercapacitor was assembled with NiCo-MOF-3 as the positive electrode. The introduction of K 3 [Fe(CN) 6 ] and glycerin in the gel electrolyte facilitates the maximum energy density of 66.3 Wh/kg of the device, with a corresponding power density reaching its maximum of 12,047 W/kg. The device's apparent energy density, excellent flexibility, and temperature resistance reveal that our method to prepare supercapacitor electrode material possesses more advantages than those in the former literature.
Keyphrases
  • solid state
  • metal organic framework
  • electron transfer
  • systematic review
  • gold nanoparticles
  • single cell
  • gene expression
  • squamous cell carcinoma
  • lymph node metastasis
  • mass spectrometry
  • diffusion weighted imaging