A Uniform and Robust Bioinspired Zwitterion Coating for Use in Blood-Contacting Catheters with Improved Anti-Inflammatory and Antithrombotic Properties.
Yuqi LiuFanjun ZhangShiying LangLi YangShuai GaoDimeng WuGongyan LiYunbing WangPublished in: Macromolecular bioscience (2021)
Inflammation and thrombosis are two major complications of blood-contacting catheters that are used as extracorporeal circuits for hemodialysis and life-support systems. In clinical applications, complications can lead to increased mortality and morbidity rates. In this work, a biomimetic erythrocyte membrane zwitterion coating based on poly(2-methacryloyloxyethyl phosphorylcholine-co-dopamine methacrylate) (pMPCDA) copolymers is uniformly and robustly modified onto a polyvinyl chloride (PVC) catheter via mussel-inspired surface chemistry. The zwitterionic pMPCDA coating exhibits excellent antifouling activity and resists bacterial adhesion, fibrinogen adsorption, and platelet adhesion/activation. The material also demonstrates great hemocompatibility, cytocompatibility, and anticoagulation properties in vitro. Additionally, this biocompatible pMPCDA coating reduces in vivo foreign-body reactions by mitigating inflammatory response and collagen capsule formation, due to its outstanding ability to resist nonspecific protein adsorption. More importantly, when compared with a bare PVC catheter, the pMPCDA coating exhibits outstanding antithrombotic properties when tested in an ex vivo rabbit perfusion model. Thus, it is envisioned that this biomimetic erythrocyte membrane surface strategy will provide a promising way to mitigate inflammation and thrombosis caused by the use of blood-contacting catheters.
Keyphrases
- inflammatory response
- atrial fibrillation
- oxidative stress
- pulmonary embolism
- risk factors
- anti inflammatory
- biofilm formation
- venous thromboembolism
- cardiovascular events
- chronic kidney disease
- magnetic resonance imaging
- type diabetes
- peritoneal dialysis
- magnetic resonance
- small molecule
- aqueous solution
- computed tomography
- immune response
- metabolic syndrome
- cell migration
- end stage renal disease
- cystic fibrosis
- drug discovery
- escherichia coli
- amino acid
- drug release
- wound healing