Spontaneous Synthesis of Highly Crystalline TiO2 Compact/Mesoporous Stacked Films by a Low-Temperature Steam-Annealing Method for Efficient Perovskite Solar Cells.
Yoshitaka SanehiraYouhei NumataMasashi IkegamiTsutomu MiyasakaPublished in: ACS applied materials & interfaces (2018)
Highly crystalline TiO2 nanostructured films were synthesized by a simple steam treatment of a TiCl4 precursor film under a saturated water vapor atmosphere at 125 °C, here referred to as the steam-annealing method. In a single TiO2 film preparation step, a bilayer structure comprising a compact bottom layer and a mesoporous surface layer was formed. The mesoporous layer was occupied by bipyramidal nanoparticles, with a composite phase of anatase and brookite crystals. Despite the low-temperature treatment process, the crystallinity of the TiO2 film was high, comparable with that of the TiO2 film sintered at 500 °C. The compact double-layered TiO2 film was applied to perovskite solar cells (PSCs) as an electron-collecting layer. The PSC exhibited a maximum power conversion efficiency (PCE) of 18.9% with an open-circuit voltage ( VOC) of 1.15 V. The PCE and VOC were higher than those of PSCs using a TiO2 film formed by 500 °C sintering.