Login / Signup

Multielectrode Network Stimulation (ME-NETS) demonstrated by concurrent tDCS and fMRI.

David A RossAnant B ShindeKarl D LerudGottfried Schlaug
Published in: bioRxiv : the preprint server for biology (2023)
Non-invasive transcranial direct current stimulation (tDCS) can modulate activity of targeted brain regions. Whether tDCS can reliably and repeatedly modulate intrinsic connectivity of entire brain networks is unclear. We used concurrent tDCS-MRI to investigate the effect of high dose anodal tDCS on resting state connectivity within the Arcuate Fasciculus (AF) network, which spans the temporal, parietal, and frontal lobes and is connected via a structural backbone, the Arcuate Fasciculus (AF) white matter tract. Effects of high-dose tDCS (4mA) delivered via a single electrode placed over one of the AF nodes (single electrode stimulation, SE-S) was compared to the same dose split between multiple electrodes placed over AF-network nodes (multielectrode network stimulation, ME-NETS). While both SE-S and ME-NETS significantly modulated connectivity between AF network nodes (increasing connectivity during stimulation epochs), ME-NETS had a significantly larger and more reliable effect than SE-S. Moreover, comparison with a control network, the Inferior Longitudinal Fasciculus (ILF) network suggested that the effect of ME-NETS on connectivity was specific to the targeted AF-network. This finding was further supported by the results of a seed-to-voxel analysis wherein we found ME-NETS primarily modulated connectivity between AF-network nodes. Finally, an exploratory analysis looking at dynamic connectivity using sliding window correlation found strong and immediate modulation of connectivity during three stimulation epochs within the same imaging session.
Keyphrases