Login / Signup

Beneficial effects of abscisic acid and melatonin in overcoming drought stress in cotton (Gossypium hirsutum L.).

Wei HuJipeng ZhangKe YanZhiguo ZhouWenqing ZhaoXuandi ZhangYanhong PuRunxing Yu
Published in: Physiologia plantarum (2021)
Pot experiments were performed to study the effects of abscisic acid (ABA) and melatonin (MT) on cotton drought tolerance and to explore their combined effects. ABA or MT spraying promoted water status and antioxidant capacity of drought-stressed leaves, which was conducive to scavenge ROS, finally increasing lint yield. However, the mitigation mechanisms of ABA and MT on drought were not identical, which were mainly manifested as: (1) ABA increased the relative water content (RWC) of drought-stressed leaves via, reducing water loss, but MT increased it via, promoting water uptake efficiency; (2) for enzymatic antioxidant system, ABA and MT might modulate different kinds of superoxide dismutase to catalyze the reduction of O2 - under drought; and (3) for ascorbic acid (AsA)-glutathione (GSH) cycle, MT increased the glutathione reductase activity in drought-stressed leaves, but ABA did not. ABA + MT spraying led to higher leaf RWC and total antioxidant capacity than single hormone under drought, leading to a lower H2 O2 level. For the enzymatic antioxidant system, single hormone treatment affected Cu/ZnSOD or MnSOD expression, but ABA + MT upregulated both genes in drought-stressed leaves. Hormones combined application also had higher CAT expression than single hormone. For AsA-GSH cycle, ABA + MT had higher dehydroascorbic acid reductase activity than single hormone, resulting in higher AsA content. Moreover, hormones combined application caused higher ascorbate peroxidase activity than single hormone, suggesting that their combination synergistically improved the ability of AsA to eliminate ROS. All these confirmed that ABA plus MT had synergistic effects on improving crop drought resistance.
Keyphrases
  • arabidopsis thaliana
  • climate change
  • transcription factor
  • hydrogen peroxide
  • cell death
  • heat stress
  • oxidative stress
  • plant growth
  • genome wide identification
  • dna methylation
  • fluorescent probe