Application of a Pillared-Layer Zn-Triazolate Metal-Organic Framework in the Dispersive Miniaturized Solid-Phase Extraction of Personal Care Products from Wastewater Samples.
Providencia González-HernándezAna B LagoJorge PasánCatalina Ruiz-PérezJuan H AyalaAna M AfonsoVerónica PinoPublished in: Molecules (Basel, Switzerland) (2019)
The pillared-layer Zn-triazolate metal-organic framework (CIM-81) was synthesized, characterized, and used for the first time as a sorbent in a dispersive micro-solid phase extraction method. The method involves the determination of a variety of personal care products in wastewaters, including four preservatives, four UV-filters, and one disinfectant, in combination with ultra-high performance liquid chromatography and UV detection. The CIM-81 MOF, constructed with an interesting mixed-ligand synthetic strategy, demonstrated a better extraction performance than other widely used MOFs in D-µSPE such as UiO-66, HKUST-1, and MIL-53(Al). The optimization of the method included a screening design followed by a Doehlert design. Optimum conditions required 10 mg of CIM-81 MOF in 10 mL of the aqueous sample at a pH of 5, 1 min of agitation by vortex and 3 min of centrifugation in the extraction step; and 1.2 mL of methanol and 4 min of vortex in the desorption step, followed by filtration, evaporation and reconstitution with 100 µL of the initial chromatographic mobile phase. The entire D-µSPE-UHPLC-UV method presented limits of detection down to 0.5 ng·mL-1; intra-day and inter-day precision values for the lowest concentration level (15 ng·mL-1)-as a relative standard deviation (in %)-lower than 8.7 and 13%, respectively; average relative recovery values of 115%; and enrichment factors ranging from ~3.6 to ~34. The reuse of the CIM-81 material was assessed not only in terms of maintaining the analytical performance but also in terms of its crystalline stability.
Keyphrases
- solid phase extraction
- metal organic framework
- ultra high performance liquid chromatography
- tandem mass spectrometry
- simultaneous determination
- high performance liquid chromatography
- molecularly imprinted
- liquid chromatography tandem mass spectrometry
- liquid chromatography
- gas chromatography mass spectrometry
- gas chromatography
- healthcare
- wastewater treatment
- palliative care
- high resolution mass spectrometry
- quality improvement
- heavy metals
- mass spectrometry
- risk assessment
- pain management
- high resolution
- affordable care act
- chronic pain
- sensitive detection
- carbon dioxide
- health insurance
- quantum dots