Login / Signup

Suppressing Nonradiative Recombination by Electron-Donating Substituents in 2D Conjugated Triphenylamine Polymers toward Efficient Perovskite Optoelectronics.

Lili XuHaifeng ZhengBo XuGaoyu LiuShengli ZhangHai-Bo Zeng
Published in: Nano letters (2023)
Highly efficient perovskite optoelectronics (POEs) have been limited by nonradiative recombination. We report a strategy to inhibit the nonradiative recombination of 2D triphenylamine polymers in the hole transport layer (HTL) via introducing electron-donating groups to enhance the conjugation effect and electron cloud density. The conjugated systems with electron-donating groups present smaller energy level oscillation compared to the ones with electron-absorbing groups, as confirmed by nonadiabatic molecular dynamics (NAMD) calculation. Further study reveals that the introduction of low-frequency phonons in the electron-donating group systems shortens the nonadiabatic coupling and inhibits the nonradiative recombination. Such electron-donating groups can decrease the valence band maximum of 2D polymers and promote hole transport. Our report provides a new design strategy to suppress nonradiative recombination in HTL for application in efficient POEs.
Keyphrases
  • solar cells
  • molecular dynamics
  • dna damage
  • dna repair
  • highly efficient
  • electron transfer
  • electron microscopy
  • photodynamic therapy
  • signaling pathway
  • high frequency