Login / Signup

Photocross-Linkable Hole Transport Materials for Inkjet-Printed High-Efficient Quantum Dot Light-Emitting Diodes.

Wenjian SunLiming XieXiaojun GuoWen-Ming SuQing Zhang
Published in: ACS applied materials & interfaces (2020)
Efficient approach based on the photochemistry of benzophenone has been developed for the cross-linking of the polymer hole-transporting layer (HTL). The cross-linked poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-(4,4'-(N-(4-butylphenyl) (TFB) thin films showed high solvent stability, smooth surface morphology, and improved charge-carrier mobility. The solution-processed red, green, and blue (RGB) quantum dot light-emitting diodes (QLEDs) based on the cross-linked HTLs showed much better performances than the corresponding devices based on the pristine TFB HTLs. The spin-coated red QLEDs based on the cross-linked HTLs showed the maximum current efficiency (CE), the maximum power efficiency (PE), and the peak external quantum efficiency (EQE) of 32.3 cd A-1, 42.3 lm W-1, and 21.4%, respectively. The inkjet-printed red QLEDs with the cross-linked HTLs exhibited the CE, PE, and EQE of 26.5 cd A-1, 37.8 lm W-1, and 18.1%, respectively. The high-performance HTLs were obtained by significantly reducing the amount of cross-linking agents.
Keyphrases
  • solar cells
  • energy transfer
  • nk cells
  • low cost
  • molecular dynamics
  • single molecule
  • room temperature
  • density functional theory