iPSCs in Modeling and Therapy of Osteoarthritis.
Maria CsobonyeiovaStefan PolakAndreas NicodemouRadoslav ZamborskyL'uboš DanišovičPublished in: Biomedicines (2021)
Osteoarthritis (OA) belongs to chronic degenerative disorders and is often a leading cause of disability in elderly patients. Typically, OA is manifested by articular cartilage erosion, pain, stiffness, and crepitus. Currently, the treatment options are limited, relying mostly on pharmacological therapy, which is often related to numerous complications. The proper management of the disease is challenging because of the poor regenerative capacity of articular cartilage. During the last decade, cell-based approaches such as implantation of autologous chondrocytes or mesenchymal stem cells (MSCs) have shown promising results. However, the mentioned techniques face their hurdles (cell harvesting, low proliferation capacity). The invention of induced pluripotent stem cells (iPSCs) has created new opportunities to increase the efficacy of the cartilage healing process. iPSCs may represent an unlimited source of chondrocytes derived from a patient's somatic cells, circumventing ethical and immunological issues. Aside from the regenerative potential of iPSCs, stem cell-derived cartilage tissue models could be a useful tool for studying the pathological process of OA. In our recent article, we reviewed the progress in chondrocyte differentiation techniques, disease modeling, and the current status of iPSC-based regenerative therapy of OA.
Keyphrases
- cell therapy
- mesenchymal stem cells
- induced pluripotent stem cells
- knee osteoarthritis
- stem cells
- umbilical cord
- bone marrow
- single cell
- rheumatoid arthritis
- extracellular matrix
- current status
- chronic pain
- induced apoptosis
- cell death
- gene expression
- cell cycle arrest
- neuropathic pain
- spinal cord injury
- risk factors
- case report
- endoplasmic reticulum stress
- dna methylation