Login / Signup

Hybrid Ionization Source Combining Nanoelectrospray and Dielectric Barrier Discharge Ionization for the Simultaneous Detection of Polar and Nonpolar Compounds in Single Cells.

Qinlei LiuJiayi LanRi WuAlina BegleyWenjie GeRenato Zenobi
Published in: Analytical chemistry (2022)
Single-cell metabolomics is expected to deliver fast and dynamic information on cell function; therefore, it requires rapid analysis of a wide variety of very small quantities of metabolites in living cells. In this work, a hybrid ionization source that combines nanoelectrospray ionization (nanoESI) and dielectric barrier discharge ionization (DBDI) is proposed for single-cell analysis. A capillary with a 1 μm i.d. tip was inserted into cells for sampling and then directly used as the nanoESI source for ionization of polar metabolites. In addition, a DBDI source was employed as a post-ionization source to improve the ionization of apolar metabolites in cells that are not easily ionized by ESI. By increasing the voltage of the DBDI source from 0 to 3.2 kV, the classes of detected metabolites can be shifted from mostly polar to both polar and apolar to mainly apolar. Plant cells (onion) and human cells (PANC-1) were investigated in this study. After optimization, 50 compounds in onion cells and 40 compounds in PANC-1 cells were observed in ESI mode (3.5 kV) and an additional 49 compounds in onion cells and 73 compounds in PANC-1 cells were detected in ESI (3.5 kV)-DBDI (2.6 kV) hybrid mode. This hybrid ionization source improves the coverage, ionization efficiency, and limit of detection of metabolites with different polarities and could potentially contribute to the fast-growing field of single-cell metabolomics.
Keyphrases