Login / Signup

Solvato-Controlled Assembly and Structural Transformation of Emissive Poly-NHC-Based Organometallic Cages and Their Applications in Amino Acid Sensing and Fluorescence Imaging.

Heng ZhangYang LiYi-Fan ZhangXiu-Juan QiaoLi-Ying SunJianli LiYao-Yu WangYing-Feng Han
Published in: Chemistry (Weinheim an der Bergstrasse, Germany) (2023)
Stimuli-induced structural transformation of supramolecular cages has drawn increasing attention because of their sensitive feature to external variations as model systems to simulate biological processes. However, combining structural transformation and useful functions has remained a difficult task. This study reports the solvato-controlled self-assembly of two unique topologies with different emission characteristics, a water-soluble Ag 8 L 4 cage (A) and an Ag 4 L 2 cage (B), produced from the same sulfonate-pendant tetraphenylethene (TPE) bridged tetrakis-(1,2,4-triazolium) ligand. Both cages show interesting solvent-responsive reversible structural transformation, and the change of fluorescence signals can efficiently track the process. Additionally, water-soluble cage A exhibits unique properties in thermochromism, thiol amino acid sensing, and subcellular imaging in aqueous media.
Keyphrases
  • water soluble
  • amino acid
  • fluorescence imaging
  • high resolution
  • photodynamic therapy
  • ionic liquid
  • deep learning
  • working memory
  • oxidative stress
  • mass spectrometry
  • diabetic rats
  • drug delivery