Login / Signup

Characterization of Catalytic Activities and Heme Coordination Structures of Heme-DNA Complexes Composed of Some Chemically Modified Hemes and an All Parallel-Stranded Tetrameric G-Quadruplex DNA Formed from d(TTAGGG).

Ryosuke ShinomiyaYuya KatahiraHaruka ArakiTomokazu ShibataAtsuya MomotakeSachiko YanagisawaTakashi OguraAkihiro SuzukiSaburo NeyaYasuhiko Yamamoto
Published in: Biochemistry (2018)
Heme binds selectively to the 3'-terminal G-quartet (G6 G-quartet) of an all parallel-stranded tetrameric G-quadruplex DNA, [d(TTAGGG)]4, to form a heme-DNA complex. Complexes between [d(TTAGGG)]4 and a series of chemically modified hemes possessing a heme Fe atom with a variety of electron densities were characterized in terms of their peroxidase activities to evaluate the effect of a change in the electron density of the heme Fe atom (ρFe) on their activities. The peroxidase activity of a complex decreased with a decreasing ρFe, supporting the idea that the activity of the complex is elicited through a reaction mechanism similar to that of a peroxidase. In the ferrous heme-DNA complex, carbon monoxide (CO) can bind to the heme Fe atom on the side of the heme opposite the G6 G-quartet, and a water molecule (H2O) is coordinated to the Fe atom as another axial ligand, trans to the CO. The stretching frequencies of Fe-bound CO (νCO) and the Fe-C bond (νFe-C) of CO adducts of the heme-DNA complexes were determined to investigate the structural and electronic natures of the axial ligands coordinated to the heme Fe atom. Comparison of the νCO and νFe-C values of the heme-DNA complexes with those of myoglobin (Mb) revealed that the donor strength of the axial ligation trans to the CO in a complex is considerably weaker than that of the proximal histidine in Mb, as expected from the coordination of H2O trans to the CO in the complex.
Keyphrases
  • circulating tumor
  • cell free
  • metal organic framework
  • single molecule
  • aqueous solution
  • molecular dynamics
  • electron transfer
  • visible light
  • nitric oxide
  • circulating tumor cells