A microstructurally inspired constitutive model for skin mechanics.
Sheng ChenAisling Ní AnnaidhSara RoccabiancaPublished in: Biomechanics and modeling in mechanobiology (2019)
This study investigates the link between the mechanical properties of skin and its microstructural characteristics. Rat back skin samples from different locations, orientations, and sexes were collected and subjected to quasi-static uniaxial tensile tests. Stress-stretch behavior at low stress ranges and rupture data at high stress ranges were collected. The influence of location, orientation, and sex on skin mechanical properties was examined by comparing the mechanical parameters (i.e., initial slope, maximum slope, ultimate tensile strength, rupture stretch, and toughness) evaluated from the tensile testing data. Location and orientation were both found to have a significant effect on the mechanical properties. Collagen structural data (i.e., fiber orientation distribution, relative content, and fiber straightness) were evaluated using histology images. It was found that the rat lower (caudal) back had higher relative collagen content when compared to the upper (cranial) back. A microstructurally based constitutive model was proposed to describe the mechanical behavior of preconditioned rat back skin. The constitutive model incorporated the distribution of collagen fiber bundle orientations and relative collagen content measured from histology, and showed good agreement with the tensile test data. The influence of location and orientation was also evident in the optimized constitutive parameters. This study was a comprehensive investigation that combines skin mechanical behavior, micro-structure, and constitutive modeling.