A unique Malpighian tubule architecture in Tribolium castaneum informs the evolutionary origins of systemic osmoregulation in beetles.
Takashi KoyamaMuhammad Tayyib NaseemDennis KolosovCamilla Trang VoDuncan MahonAmanda Sofie Seger JakobsenRasmus Lycke JensenBarry DenholmMichael J O'DonnellKenneth Veland HalbergPublished in: Proceedings of the National Academy of Sciences of the United States of America (2021)
Maintaining internal salt and water balance in response to fluctuating external conditions is essential for animal survival. This is particularly true for insects as their high surface-to-volume ratio makes them highly susceptible to osmotic stress. However, the cellular and hormonal mechanisms that mediate the systemic control of osmotic homeostasis in beetles (Coleoptera), the largest group of insects, remain largely unidentified. Here, we demonstrate that eight neurons in the brain of the red flour beetle Tribolium castaneum respond to internal changes in osmolality by releasing diuretic hormone (DH) 37 and DH47-homologs of vertebrate corticotropin-releasing factor (CRF) hormones-to control systemic water balance. Knockdown of the gene encoding the two hormones (Urinate, Urn8) reduces Malpighian tubule secretion and restricts organismal fluid loss, whereas injection of DH37 or DH47 reverses these phenotypes. We further identify a CRF-like receptor, Urinate receptor (Urn8R), which is exclusively expressed in a functionally unique secondary cell in the beetle tubules, as underlying this response. Activation of Urn8R increases K+ secretion, creating a lumen-positive transepithelial potential that drives fluid secretion. Together, these data show that beetle Malpighian tubules operate by a fundamentally different mechanism than those of other insects. Finally, we adopt a fluorescent labeling strategy to identify the evolutionary origin of this unusual tubule architecture, revealing that it evolved in the last common ancestor of the higher beetle families. Our work thus uncovers an important homeostatic program that is key to maintaining osmotic control in beetles, which evolved parallel to the radiation of the "advanced" beetle lineages.
Keyphrases
- genome wide
- cell therapy
- spinal cord
- quantum dots
- quality improvement
- white matter
- gene expression
- ultrasound guided
- multiple sclerosis
- transcription factor
- electronic health record
- radiation induced
- radiation therapy
- metabolic syndrome
- adipose tissue
- big data
- spinal cord injury
- machine learning
- copy number
- deep learning
- drug induced
- stress induced
- label free
- resting state
- data analysis