Login / Signup

S = 1 Tetraazacyclophane Diradical Dication with Robust Stability: A Case of Low-Temperature One-Dimensional Antiferromagnetic Chain.

Wenqing WangChao ChenChan ShuSuchada RajcaXinping WangAndrzej Rajca
Published in: Journal of the American Chemical Society (2018)
One-dimensional (1D) spin-1 ( S = 1) chain of organic radicals with low local magnetic anisotropy may provide a better understanding of the low-dimensional magnetism. We report solid-state studies, including single crystal X-ray crystallography, of air-stable tetraazacyclophane diradical dication salt 12·2+·2[Al(OC(CF3)2CH3)4]- with a triplet ground state (Δ EST ≈ 0.5 kcal mol-1). The magnetic behavior for 12·2+ at low temperature is best modeled by 1D spin S = 1 Heisenberg chain with intrachain antiferromagnetic coupling of J'/ k = -5.4 K, which is associated with the interaryl C···C contacts, including π-π interactions. Zero-field splitting value, | D/ hc| ≈ 5.6 × 10-3 cm-1, for 12·2+ is rather small; thus, the 1D chains are characterized by the high degree of isotropicity | D/2 J'| ≈ 7.5 × 10-4. The diradical dication salt possesses extraordinary stability with onset of decomposition at temperature of about 180 °C (∼450 K), based on thermogravimetric analysis and EPR spectroscopy.
Keyphrases