In silico analysis of the possible crosstalk between O-linked β-GlcNAcylation and phosphorylation sites of Disabled 1 adaptor protein in vertebrates.
Remziye DeveciRemziye DeveciPublished in: Amino acids (2023)
Disabled 1 (Dab1) is an adaptor protein with essential functions regulated by reelin signaling and affects many biological processes in the nervous system, including cell motility, adhesion, cortical development, maturation, and synaptic plasticity. Posttranslational modifications directly guide the fates of cytoplasmic proteins to complete their functions correctly. Reciprocal crosstalk between O-GlcNAcylation and phosphorylation is a dynamic modification in cytoplasmic proteins. It modulates the functions of the proteins by regulating their interactions with other molecules in response to the continuously changeable cell microenvironment. Although Dab1 contains conserved recognition sites for phosphorylation in their N-terminal protein interaction domain, the O-β-GlcNAcylation and phosphorylation sites of human Dab1 sequence, their reciprocal crosstalk, and potential kinases catalyzing the phosphorylation remain unknown. In this study, we determined potential thirty-seven O-β-GlcNAcylation and sixty-seven phosphorylation sites. Conserved twenty-one residues of these glycosylated sites were also phosphorylated with various kinases, including ATM, CKI, DNAPK, GSK3, PKC, PKG, RSK, cdc2, cdk5, and p38MAPK. In addition, we analyzed these conserved sites at our constructed two- and three-dimensional structures of human Dab1 protein. Dab1 protein models were frequently composed of coil structures as well as α-helix and β-strands. Many of these conserved crosstalk sites between O-β-GlcNAcylation and phosphorylation were localized at the coil region of the protein model. These findings may guide biochemical, genetic, and glyco-biology based on further experiments about the Dab1 signaling process. Understanding these modifications might change the point of view of the Dab1 signaling process and treatment for pathological conditions in neurodegenerative diseases such as Alzheimer's disease.