Login / Signup

A DNAzyme-driven random biped DNA walking nanomachine for sensitive detection of uracil-DNA glycosylase activity.

Li TanJiangnan LuXin WangGuang LiuXiaomei MuKun HuShu-Lin ZhaoJianniao Tian
Published in: The Analyst (2021)
Highly specific and ultrasensitive detection of uracil-DNA glycosylase (UDG) activity is of great significance for maintaining genomic integrity and medical research of related diseases. Here, we constructed a random DNA walking nanomachine based on a DNAzyme for UDG activity detection on the AuNP (Au nanoparticle) surface. When UDG is present, the U bases in the Y structure are removed, resulting in AP sites, which will be cleaved by Endo-IV to generate a 3' concave end for Exo-III, causing the locking strand of the DNAzyme to be completely hydrolyzed by the Exo-III and release the walking strand to randomly pair with the substrate strand on the AuNP surface; then, the walking strand exerts its cleavage activity with the assistance of Mg2+ to cleave the substrate strand and keep the fluorophore 6-carboxyfluorescein (FAM) away from the surface of the AuNP, which restores the fluorescence signal of this system. In this way, sensitive detection of UDG can be realized, and the detection limit is as low as 3.69 × 10-6 U mL-1. In addition, we found that this method is highly specific to UDG and can be used to detect UDG specifically in complex samples, which has certain application prospects in biomedical research and clinical diagnosis related to UDG.
Keyphrases