Login / Signup

Uncovering hub genes in sepsis through bioinformatics analysis.

Zhao LiuEryue QiuBihui YangYiqian Zeng
Published in: Medicine (2023)
In-depth studies on the mechanisms of pathogenesis of sepsis and diagnostic biomarkers in the early stages may be the key to developing individualized and effective treatment strategies. This study aimed to identify sepsis-related hub genes and evaluate their diagnostic reliability. The gene expression profiles of GSE4607 and GSE131761 were obtained from the Gene Expression Omnibus. Differentially co-expressed genes between the sepsis and control groups were screened. Single-sample gene set enrichment analysis and gene set variation analysis were performed to investigate the biological functions of the hub genes. A receiver operating characteristic curve was used to evaluate diagnostic value. Datasets GSE154918 and GSE185263 were used as external validation datasets to verify the reliability of the hub genes. Four differentially co-expressed genes, FAM89A, FFAR3, G0S2, and FGF13, were extracted using a weighted gene co-expression network analysis and differential gene expression analysis methods. These 4 genes were upregulated in the sepsis group and were distinct from those in the controls. Moreover, the receiver operating characteristic curves of the 4 genes exhibited considerable diagnostic value in discriminating septic blood samples from those of the non-septic control group. The reliability and consistency of these 4 genes were externally validated. Single-sample gene set enrichment analysis and gene set variation analysis analyses indicated that the 4 hub genes were significantly correlated with the regulation of immunity and metabolism in sepsis. The identified FAM89A, FFAR3, G0S2, and FGF13 genes may help elucidate the molecular mechanisms underlying sepsis and drive the introduction of new biomarkers to advance diagnosis and treatment.
Keyphrases