Login / Signup

Identification of novel variants associated with warfarin stable dosage by use of a two-stage extreme phenotype strategy.

Z LuoXi LiM ZhuJ TangZ LiX ZhouG SongZ LiuH ZhouW Zhang
Published in: Journal of thrombosis and haemostasis : JTH (2016)
Background The variation among patients in warfarin response complicates the management of warfarin therapy, and an improper therapeutic dose usually results in serious adverse events. Objective To use a two-stage extreme phenotype strategy in order to discover novel warfarin dose-associated mutations in heart valve replacement patients. Patients/method A total of 1617 stable-dose patients were enrolled and divided randomly into two cohorts. Stage I patients were genotyped into three groups on the basis of VKORC1-1639G>A and CYP2C9*3 polymorphisms; only patients with the therapeutic dose at the upper or lower 5% of each genotype group were selected as extreme-dose patients for resequencing of the targeted regions. Evaluation of the accuracy of the sequence data and the potential value of the stage I-identified significant mutations were conducted in a validation cohort of 420 subjects. Results A group of mutations were found to be significantly associated with the extreme warfarin dose. The validation work finally identified four novel mutations, i.e. DNMT3A rs2304429 (24.74%), CYP1A1 rs3826041 (47.35%), STX1B rs72800847 (7.01%), and NQO1 rs10517 (36.11%), which independently and significantly contributed to the overall variability in the warfarin dose. After addition of these four mutations, the estimated regression equation was able to account for 56.2% (R2Adj = 0.562) of the overall variability in the warfarin maintenance dose, with a predictive accuracy of 62.4%. Conclusion Our study provides evidence linking genetic variations in STX1B, DNMT3A and CYP1A1 to warfarin maintenance dose. The newly identified mutations together account for 2.2% of warfarin dose discrepancy.
Keyphrases