Login / Signup

multiFLEX-LF: A Computational Approach to Quantify the Modification Stoichiometries in Label-Free Proteomics Data Sets.

Pauline HiortChristoph N SchlaffnerJudith A SteenBernhard Y RenardHanno Steen
Published in: Journal of proteome research (2022)
In liquid-chromatography-tandem-mass-spectrometry-based proteomics, information about the presence and stoichiometry of protein modifications is not readily available. To overcome this problem, we developed multiFLEX-LF, a computational tool that builds upon FLEXIQuant, which detects modified peptide precursors and quantifies their modification extent by monitoring the differences between observed and expected intensities of the unmodified precursors. multiFLEX-LF relies on robust linear regression to calculate the modification extent of a given precursor relative to a within-study reference. multiFLEX-LF can analyze entire label-free discovery proteomics data sets in a precursor-centric manner without preselecting a protein of interest. To analyze modification dynamics and coregulated modifications, we hierarchically clustered the precursors of all proteins based on their computed relative modification scores. We applied multiFLEX-LF to a data-independent-acquisition-based data set acquired using the anaphase-promoting complex/cyclosome (APC/C) isolated at various time points during mitosis. The clustering of the precursors allows for identifying varying modification dynamics and ordering the modification events. Overall, multiFLEX-LF enables the fast identification of potentially differentially modified peptide precursors and the quantification of their differential modification extent in large data sets using a personal computer. Additionally, multiFLEX-LF can drive the large-scale investigation of the modification dynamics of peptide precursors in time-series and case-control studies. multiFLEX-LF is available at https://gitlab.com/SteenOmicsLab/multiflex-lf.
Keyphrases