Normal-Mode Vibrational Analysis of Weakly Bound Oligomers at Constrained Stationary Points of Arbitrary Order.
Roland TóbiásPéter ÁrendásAttila G CsászárPublished in: Journal of chemical theory and computation (2022)
Following the full realization of the importance of noncovalent interactions, finding and characterizing stationary points (SP), of various order, for weakly bound oligomers have become important tasks for computational chemists. An efficient algorithm and an associated computer code, called oligoCGO, are described, facilitating constrained geometry optimization of oligomers of arbitrary structure and complexity and normal-mode vibrational analysis at nonstationary geometries. To minimize the adverse effects of nonzero forces on harmonic vibrational analyses at constrained stationary points (cSP), two residual gradient correction (RGC) schemes are proposed. RGC 1 , for which a rigorous justification is given, is based on ignoring the remaining forces in internal-coordinate space. RGC 2 modifies the geometry of the cSP in a single Newton step and recalculates the Cartesian Hessian at this updated geometry. As demonstrated by 10 examples related to the water-water, water-methane, and methane-methane dimers as well as the methane trimer, without RGC the harmonic analysis of cSPs may result in even qualitatively incorrect results when compared to reference values obtained at the nearby unconstrained SPs (uSP). Both RGC protocols work exceedingly well, and the corrected harmonic wavenumbers of the cSPs are very close to their uSP counterparts.