Login / Signup

Temperature-modulated morphological changes in MIL-88B(Fe)-derived iron-based materials triggering generation of the peroxymonosulfate nonradical pathway to degrade carbamazepine: The key role of iron nanoparticles and CN.

Chen ZengJunli ZhengJiaxin LiuQintie LinYuxin LiuYajie WuHao LuoYang Luo
Published in: Journal of colloid and interface science (2024)
Temperature modulation of the synthesis process of MOF-derived composites is not well understood for changes in the peroxymonosulfate catalytic domain. This study synthesized a carbon-based nitrogen-doped (MN@C) MOF-derived composite catalyst derived from MIL-88B(Fe) (Materials Institute Lavoisier) by modulating temperature changes and calcination. Combined with density-functional theory calculations (DFT) analyses showed that changes in iron nanoparticles (FeNP) and CN content caused the alterations of the degradation pathways. MN@C-9 exhibited outstanding activation performance (100 % carbamazepine (CBZ) removal within 10 min). The system maintained efficient operation in different aqueous environments and a wide pH range and demonstrated efficient removal of many pollutants typical of pharmaceuticals and personal care products (PPCPs). After comprehensively analyzing the results of liquid chromatography mass spectrometry (LC-MS) and toxicity prediction, the possible degradation pathways were reasonably speculated, and the toxicity of the byproducts was greatly reduced. This study provides a potential and efficient catalyst preparation strategy for water purification.
Keyphrases