Login / Signup

Detection of Single Proteins with a General Nanopore Sensor.

Qiao LiYi-Lun YingShao-Chuang LiuYao LinYi-Tao Long
Published in: ACS sensors (2019)
Single protein sensing based on solid-state nanopores is promising but challenging, because the fast translocation velocity of a protein is beyond the bandwidth of nanopore instruments. To decelerate the translocation speed, here, we employed a common protein cross-link interaction to achieve a general and robust nanopore sensing platform for single-molecule detection of protein. Benefiting from the EDC/NHS coupling interaction between nanopore and proteins, a 10-fold decrease in speed has been achieved. The clearly distinguishable current signatures further reveal that the anisotropic translocation of a protein, which are horizontal, vertical, and flipping transit inside nanopore confinement. This strategy provides a general platform for rapid detection of proteins as well as exploring fundamental protein dynamics at the single-molecule level.
Keyphrases