Login / Signup

Direct Imaging of Surface Melting on a Single Sn Nanoparticle.

Aleksandr P KryshtalSergiy BogatyrenkoOlha Khshanovska
Published in: Nano letters (2023)
Despite previous studies, understanding the fundamental mechanism of melting metal nanoparticles remains one of the major scientific challenges of nanoscience. Herein, the kinetics of melting of a single Sn nanoparticle was investigated using in situ transmission electron microscopy heating techniques with a temperature step of up to 0.5 °C. We revealed the surface premelting effect and assessed the density of the surface overlayer on a tin particle of 47 nm size using a synergetic combination of high-resolution scanning transmission electron microscopy imaging and low electron energy loss spectral imaging. Few-monolayer-thick disordered phase nucleated at the surface of the Sn particle at a temperature ∼25 °C below the melting point and grew (up to a thickness of ∼4.5 nm) into the solid core with increasing temperature until the whole particle became liquid. We revealed that the disordered overlayer was not liquid but quasi-liquid with a density intermediate between that of solid and liquid Sn.
Keyphrases