Reconfigurable Floquet elastodynamic topological insulator based on synthetic angular momentum bias.
Amir DarabiXiang NiMichael J LeamyAndrea AlùPublished in: Science advances (2020)
Originating with the discovery of the quantum Hall effect (QHE) in condensed matter physics, topological order has been receiving increased attention also for classical wave phenomena. Topological protection enables efficient and robust signal transport; mechanical topological insulators (TIs), in particular, are easy to fabricate and exhibit interfacial wave transport with minimal dissipation, even in the presence of sharp edges, defects, or disorder. Here, we report the experimental demonstration of a phononic crystal Floquet TI (FTI). Hexagonal arrays of circular piezoelectric disks bonded to a PLA substrate, shunted through negative electrical capacitance, and manipulated by external integrated circuits, provide the required spatiotemporal modulation scheme to break time-reversal symmetry and impart a synthetic angular momentum bias that can induce strong topological protection on the lattice edges. Our proposed reconfigurable FTI may find applications for robust acoustic emitters and mechanical logic circuits, with distinct advantages over electronic equivalents in harsh operating conditions.