Login / Signup

Respiration of thermogenic inflorescences of skunk cabbage Symplocarpus renifolius in heliox.

Roger S SeymourKikukatsu ItoYui Umekawa
Published in: Plant, cell & environment (2017)
The respiration rate of the thermogenic inflorescences of Japanese skunk cabbage Symplocarpus renifolius can reach 300 nmol s-1 g-1 , which is sufficient to raise spadix temperature (Ts ) up to 15 °C above ambient air temperature (Ta ). Respiration rate is inversely related to Ta , such that the Ts achieves a degree of independence from Ta , an effect known as temperature regulation. Here, we measure oxygen consumption rate (Ṁo2 ) in air (21% O2 in mainly N2 ) and in heliox (21% O2 in He) to investigate the diffusive conductance of the network of gas-filled spaces and the thermoregulatory response. When Ts was clamped at 15 °C, the temperature that produces maximal Ṁo2 in this species, exposure to high diffusivity heliox increased mean Ṁo2 significantly from 137 ± 17 to 202 ± 43 nmol s-1 g-1 FW, indicating that respiration in air is normally limited by diffusion in the gas phase and some mitochondria are unsaturated. When Ta was clamped at 15 °C and Ts was allowed to vary, exposure to heliox reduced Ts 1 °C and increased Ṁo2 significantly from 116 ± 10 to 137 ± 19 nmol s-1 g-1 , indicating that enhanced heat loss by conduction and convection can elicit the thermoregulatory response.
Keyphrases
  • air pollution
  • particulate matter
  • cell death
  • heart rate
  • heat stress
  • resistance training
  • network analysis