Login / Signup

Prognostic Significance of Immune Cell Populations Identified by Machine Learning in Colorectal Cancer Using Routine Hematoxylin and Eosin-Stained Sections.

Juha P VäyrynenMai Chan LauKoichiro HarukiAndressa Dias CostaJennifer BorowskyMelissa ZhaoKenji FujiyoshiKota ArimaTyler S TwomblyJunko KishikawaSimeng GuSaina AminmozaffariShan-Shan ShiYoshifumi BabaNaohiko AkimotoTomotaka UgaiAnnacarolina F L Da SilvaMingyang SongKana WuAndrew T ChanReiko NishiharaCharles S FuchsJeffrey A MeyerhardtMarios GiannakisShuji OginoJonathan A Nowak
Published in: Clinical cancer research : an official journal of the American Association for Cancer Research (2020)
These findings highlight the potential for machine learning assessment of H&E-stained sections to provide robust, quantitative tumor-immune biomarkers for precision medicine.
Keyphrases
  • machine learning
  • artificial intelligence
  • big data
  • clinical practice
  • deep learning
  • high resolution
  • human health
  • risk assessment
  • genetic diversity
  • clinical evaluation