Login / Signup

Comparison of Nasal Dimensions According to the Facial and Nasal Indices Using Cone-Beam Computed Tomography.

Jeong-Hyun LeeHey-Suk KimJong-Tae Park
Published in: Journal of personalized medicine (2024)
The nasal cavity constitutes the foremost portion of the respiratory system, composed of the anterior nasal aperture, nostrils, and choanae. It has an intricate anatomical structure since it has various functions, such as heat exchange, humidification, and filtration. Accordingly, clinical symptoms related to the nose, such as nasal congestion, snoring, and nasal septal deviation, are closely linked to the complex anatomical structure of the nasal cavity. Thus, the nasal cavity stands as a paramount structure in both forensic and clinical contexts. The majority of relevant studies have performed comparisons between sexes, with studies making comparisons according to the FI and NI only and examining relative percentages. Furthermore, the nasal cavity was measured in 2D, and not 3D, in most cases. In this study, we conducted a 3D modeling and anthropometric assessment of the nasal cavity using a 3D analysis software. Furthermore, we aimed to investigate whether the size of the nasal cavity differs according to sex, facial index (FI), and nasal index (NI). We retrospectively reviewed the cone-beam computed tomography (CBCT) data of 100 participants (50 males, 50 females) aged 20-29 years who visited the dental hospital of Dankook University (IRB approval no. DKUDH IRB 2020-01-007). Our findings showed that nasal cavity sizes generally differed according to sex, FI, and NI. These findings provide implications for performing patient-tailored surgeries in clinical practice and conducting further research on the nasal cavity. Therefore, we believe that our study makes a significant contribution to the literature.
Keyphrases
  • chronic rhinosinusitis
  • cone beam computed tomography
  • healthcare
  • systematic review
  • heart failure
  • machine learning
  • atrial fibrillation
  • body composition
  • big data
  • heat stress
  • smoking cessation