Rapid neural reorganization during retrieval practice predicts subsequent long-term retention and false memory.
Liping ZhuangJingyi WangBingsen XiongCheng BianLei HaoPeter J BayleyShaozheng QinPublished in: Nature human behaviour (2021)
Active retrieval can alter the strength and content of a memory, yielding either enhanced or distorted subsequent recall. However, how consolidation influences these retrieval-induced seemingly contradictory outcomes remains unknown. Here we show that rapid neural reorganization over an eight-run retrieval practice predicted subsequent recall. Retrieval practice boosted memory retention following a 24-hour (long-term) but not 30-minute delay, and increased false memory at both delays. Long-term retention gains were predicted by multi-voxel representation distinctiveness in the posterior parietal cortex (PPC) that increased progressively over retrieval practice. False memory was predicted by unstable representation distinctiveness in the medial temporal lobe (MTL). Retrieval practice enhanced the efficiency of memory-related brain networks, through building up PPC and MTL connections with the ventrolateral and dorsolateral prefrontal cortex that predicted long-term retention gains and false memory, respectively. Our findings indicate that retrieval-induced rapid neural reorganization together with consecutive consolidation fosters long-term retention and false memories via distinct pathways.