ANGPTL7 is transcriptionally regulated by SP1 and modulates glucocorticoid-induced cross-linked actin networks in trabecular meshwork cells via the RhoA/ROCK pathway.
Mengsha SunWenjia LiuMinwen ZhouPublished in: Cell death discovery (2022)
Glaucoma is one of the leading causes of worldwide irreversible blindness. Lowering elevated intraocular pressure (IOP) is currently the only effective approach for controlling the progress of glaucoma. Angiopoietin-like 7 (ANGPTL7) takes a key part in elevated outflow resistance of aqueous humor in dysfunctional trabecular meshwork (TM), along with the formation of cross-linked actin networks (CLANs), leading to high IOP. In this study, we explored the role of the ANGPTL7 signaling pathway in CLAN formation. We detected the expression of ANGPTL7 in cultured primary TM cells treated with dexamethasone (DEX) and ethanol as a control using qRT-PCR and western blotting. Actin filaments were revealed by phalloidin staining. ANGPTL7 short hairpin RNA (shRNA) was applied to TM cells to examine the effect of ANGPTL7 on DEX-induced CLAN formation. Western blotting was used to assess the effect of ANGPTL7 on the RhoA/Rho-associated kinase (Rho-kinase/ROCK) signaling pathway. Bioinformatics, dual-luciferase reporter assays, and chromatin immunoprecipitation were employed to identify the transcription factors of ANGPTL7. Transcription factor specificity protein 1 (SP1) overexpression and silencing were performed to determine their roles in the modulation of ANGPTL7 expression. We found DEX-induced ANGPTL7 expression and stress fiber rearrangement in TM cells. ANGPTL7 knockdown effectively inhibited the formation of CLANs. Moreover, it was involved in the regulation of the RhoA/ROCK signaling pathway, further affecting DEX-induced CLAN formation. SP1 was identified as a transcription factor of ANGPTL7 which regulated ANGPTL7 level to mediate CLAN formation through the RhoA/ROCK signaling pathway. This study contributes to revealing the molecular mechanisms of ANGPTL7 in CLAN formation, which is involved in TM dysfunction and glaucoma pathogenesis.
Keyphrases
- induced apoptosis
- transcription factor
- signaling pathway
- cell cycle arrest
- pi k akt
- high glucose
- endoplasmic reticulum stress
- oxidative stress
- diabetic rats
- dna damage
- south africa
- low dose
- protein kinase
- high throughput
- crispr cas
- high dose
- ionic liquid
- tyrosine kinase
- long non coding rna
- dna methylation
- single cell
- optical coherence tomography