Login / Signup

Camera Method for Monitoring a Mechanochromic Luminescent β-Diketone Dye with Rapid Recovery.

Tristan ButlerAlexander S MathewMichal SabatCassandra L Fraser
Published in: ACS applied materials & interfaces (2017)
Mechanochromic luminescent (ML) materials, which show a change in emission due to an applied mechanical stimulus, are useful components in a variety of applications, including organic light-emitting diodes, force sensors, optical memory storage, and next-generation lighting materials. While there are many different ML active derivatives, few show room temperature self-erasing. Thin films of the methoxy substituted β-diketone, gbmOMe, initially exhibited blue (428 nm) emission; however, green (478 nm) emission was observed after smearing. The mechanically generated smeared state recovered so rapidly that characterization of its emission was difficult at room temperature using traditional luminescence techniques. Thus, a new complementary metal oxide semiconductor camera imaging method was developed and used to calculate the decay time of the mechanically generated smeared state (i.e., smeared-state decay; τSM) for gbmOMe thin films. Additionally, this method was used to evaluate substrate and film thickness effects on ML recovery for glass and weighing paper films. The recovery behavior of gbmOMe was largely substrate-independent for the indicated matrixes; however, thickness effects were observed. Thus, film thickness may be the main factor in determining ML recovery behavior and must be accounted for when comparing the recovery dynamics of different ML materials. Moreover, when heated above the melting point (Tm = 119 °C), bulk gbmOMe powders assumed a metastable state that eventually crystallized after a few minutes at room temperature. However, melted thin films remained in an amorphous state indefinitely despite annealing at different temperatures (50-110 °C). The amorphous phase was identified as a supercooled liquid via changing the rate of cooling in differential scanning calorimetry thermograms.
Keyphrases