Login / Signup

A Combined Wave Function and Density Functional Approach for K-Edge X-ray Absorption Near-Edge Spectroscopy: A Case Study of Hydrated First-Row Transition Metal Ions.

Soumen GhoshShaul MukamelNiranjan Govind
Published in: The journal of physical chemistry letters (2023)
The prediction of X-ray absorption spectra (XAS) of transition metal complexes has important and broad application areas in chemistry and biology. In this letter, we have investigated the predictive ability of multiconfiguration pair-density functional theory (MC-PDFT) for X-ray absorption spectra by calculating the metal K pre-edge features of aquated 3 d transition metal ions in common oxidation states. MC-PDFT results were compared with experimentally measured spectra as well as analyzed against results from restricted active-space second-order perturbation theory (RASPT2) and time-dependent density functional theory (TDDFT). As expected, TDDFT performs well for excited states that can be accurately represented by singly excited configurations but fails for excited states where higher order excitations become important. On the other hand, both RASPT2 and MC-PDFT provide quantitatively accurate results for all excited states irrespective of their character. While core-level spectroscopy with RASPT2 is accurate, it is computationally expensive. Our results show that MC-PDFT performs equally well with significantly lower computational cost and is an encouraging alternate approach for X-ray spectroscopies.
Keyphrases