Login / Signup

Bioengineered Salivary Gland Microtissues─A Review of 3D Cellular Models and their Applications.

Sangeeth PillaiJose Gil Munguia-LopezSimon D Tran
Published in: ACS applied bio materials (2024)
Salivary glands (SGs) play a vital role in maintaining oral health through the production and release of saliva. Injury to SGs can lead to gland hypofunction and a decrease in saliva secretion manifesting as xerostomia. While symptomatic treatments for xerostomia exist, effective permanent solutions are still lacking, emphasizing the need for innovative approaches. Significant progress has been made in the field of three-dimensional (3D) SG bioengineering for applications in gland regeneration. This has been achieved through a major focus on cell culture techniques, including soluble cues and biomaterial components of the 3D niche. Cells derived from both adult and embryonic SGs have highlighted key in vitro characteristics of SG 3D models. While still in its first decade of exploration, SG spheroids and organoids have so far served as crucial tools to study SG pathophysiology. This review, based on a literature search over the past decade, covers the importance of SG cell types in the realm of their isolation, sourcing, and culture conditions that modulate the 3D microenvironment. We discuss different biomaterials employed for SG culture and the current advances made in bioengineering SG models using them. The success of these 3D cellular models are further evaluated in the context of their applications in organ transplantation and in vitro disease modeling.
Keyphrases
  • stem cells
  • oral health
  • systematic review
  • induced apoptosis
  • cell therapy
  • bone marrow
  • oxidative stress
  • endoplasmic reticulum stress