Login / Signup

Synergistic Molecular Alignment and Dipole Polarization in Stretched Nafion/Poly(vinylidene fluoride) Blend Membranes for High Proton Conduction in PEMFCs.

Iksu LeeJaekeun LeeDongjun LeeSeungbin KimSeong K KimInsung Bae
Published in: ACS applied materials & interfaces (2024)
The nanostructure of Nafion and poly(vinylidene fluoride) (PVDF) blend membranes is successfully aligned through a mechanical uniaxial stretching method. The phase-separated morphology of Nafion molecules distinctly forms hydrophilic proton channels with increased connectivity, resulting in enhanced proton conductivity. Additionally, the crystalline phase of PVDF molecules undergoes a successful transformation from the α- to β-phase during membrane stretching, demonstrating an alignment of fluorine and hydrogen atoms with a TTTT(trans) structure. The aligned nanostructure of the blend film, combined with the dipole polarization of the β-phase PVDF, synergistically enhances the proton conduction through the membrane for operating proton-exchange membrane fuel cells (PEMFCs). The controlled structures of the blend membranes are thoroughly investigated using atomic force microscopy and small-angle X-ray scattering. Furthermore, the improved in-plane proton conductivity facilitates increased proton conduction at the interface between the membrane and catalyst layer in the membrane-electrode assembly, ultimately enhancing the power generation of PEMFCs.
Keyphrases