Login / Signup

A silylene-stabilized ditin(0) complex and its conversion to methylditin cation and distannavinylidene.

Shaozhi DuFanshu CaoXi ChenHua RongHaibin SongZhenbo Mo
Published in: Nature communications (2023)
Due to their intrinsic high reactivity, isolation of tin(0) complexes remains challenging. Herein, we report the synthesis of a silylene-stabilized ditin(0) complex (2) by reduction of a silylene-supported dibromostannylene (1) with 1 equivalent of magnesium (I) dimer in toluene. The structure of 2 was established by single crystal X-ray diffraction analysis. Density Functional Theory calculations revealed that complex 2 bears a Sn=Sn double bond and one lone pair of electrons on each of the Sn(0) atoms. Remarkably, complex 2 is readily methylated to give a mixed-valent methylditin cation (4), which undergoes topomerization in solution though a reversible 1,2-Me migration along a Sn=Sn bond. Computational studies showed that the three-coordinate Sn atom in 4 is the dominant electrophilic center, and allows for facile reaction with KHBBu s 3 furnishing an unprecedented N-heterocyclic silylenes-stabilized distannavinylidene (5). The synthesis of 2, 4 and 5 demonstrates the exceptional ability of N-heterocyclic silylenes to stabilize low valent tin complexes.
Keyphrases
  • density functional theory
  • molecular dynamics
  • ionic liquid
  • high resolution
  • magnetic resonance imaging
  • molecular dynamics simulations
  • reduced graphene oxide
  • data analysis