Login / Signup

Population genomics unravels a lag phase during the global fall armyworm invasion.

Karine DurandSudeeptha YainnaKiwoong Nam
Published in: Communications biology (2024)
The time that elapsed between the initial introduction and the proliferation of an invasive species is referred to as the lag phase. The identification of the lag phase is critical for generating plans for pest management and for the prevention of biosecurity failure. However, lag phases have been identified mostly through retrospective searches of historical records. The agricultural pest fall armyworm (FAW; Spodoptera frugiperda) is native to the New World. FAW invasion was first reported from West Africa in 2016, then it spread quickly through Africa, Asia, and Oceania. Here, using population genomics approaches, we demonstrate that the FAW invasion involved an undocumented lag phase. Invasive FAW populations have negative signs of genomic Tajima's D, and invasive population-specific genetic variations have particularly decreased Tajima's D, supporting a substantial amount of time for the generation of new mutations in introduced FAW populations. Model-based diffusion approximations support the existence of a period with a cessation of gene flow between native and invasive FAW populations. Taken together, these results provide strong support for the presence of a lag phase during the FAW invasion. These results show the usefulness of using population genomics analyses to identify lag phases in biological invasions.
Keyphrases
  • cell migration
  • single cell
  • copy number
  • signaling pathway
  • gene expression
  • genetic diversity
  • climate change
  • heavy metals