Login / Signup

Ecological Dynamics of Broad- and Narrow-Host-Range Viruses Infecting the Bloom-Forming Toxic Cyanobacterium Microcystis aeruginosa.

Daichi MorimotoNaohiro YoshidaAya SasakiSatoshi NakagawaYoshihiko SakoTakashi Yoshida
Published in: Applied and environmental microbiology (2023)
Microcystis aeruginosa is predicted to interact and coexist with diverse broad- and narrow-host-range viruses within a bloom; however, little is known about their affects on Microcystis population dynamics. Here, we developed a real-time PCR assay for the quantification of these viruses that have different host ranges. During the sampling period, total Microcystis abundance showed two peaks in May and August with a temporary decrease in June. The Microcystis population is largely divided into three phylotypes based on internal transcribed sequences (ITS; ITS types I to III). ITS I was the dominant phylotype (66% to 88%) except in June. Although the ITS II and III phylotypes were mostly less abundant, these phylotypes temporarily increased to approximately equivalent abundances of the ITS I population in June. During the same sampling period, the abundances of the broad-host-range virus MVGF_NODE331 increased from April to May and from July to October with a temporary decrease in June, in which its dynamics were in proportion to the increase of total Microcystis abundances regardless of changes in host ITS population composition. In contrast, the narrow-host-range viruses MVG_NODE620 and Ma-LMM01 were considerably less abundant than the broad-host-range virus and generally did not fluctuate in the environment. Considering that M. aeruginosa could increase the abundance and sustain the bloom under the prevalence of the broad-host-range virus, host abundant and diverse antiviral mechanisms might contribute to coexistence with its viruses. IMPORTANCE The bloom-forming toxic cyanobacterium Microcystis aeruginosa interacts with diverse broad- and narrow-host-range viruses. However, the dynamics of the Microcystis population (at the intraspecies level) and viruses with different host ranges remain unknown. Our real-time PCR assays unveiled that the broad-host-range virus gradually increased in abundance over the sampling period, in proportion to the increase in total Microcystis abundance regardless of changes in genotypic composition. The narrow-host-range viruses were considerably less abundant than the broad-host-range virus and did not generally fluctuate in the environment. The expansion and maintenance of the Microcystis bloom even under the increased infection by the broad-host-range virus suggested that highly abundant and diverse antiviral mechanisms allowed them to coexist with viruses under selective pressure. This paper expands our knowledge about the ecological dynamics of Microcystis viruses and provides potential insights into their coexistence with their host.
Keyphrases
  • lymph node
  • computed tomography
  • risk assessment
  • microbial community
  • binding protein
  • antibiotic resistance genes