Electromagnetically Induced Absorption Overcomes the Upper Limit of Light Absorption: Dipole-Dipole Coupling with Phase Retardation in Plasmonic-Dielectric Dimers.
Kishin MatsumoriRyushi FujimuraMarkus RetschPublished in: The journal of physical chemistry. C, Nanomaterials and interfaces (2023)
Electromagnetically induced absorption (EIA) by a phase-retarded coupling is theoretically investigated using a dimer composed of a plasmonic and dielectric particle. This phase-retarded coupling originates from the particles interacting with each other through their scattered intermediate fields (in between near and far fields). Our analysis based on the coupled-dipole method and an extended coupled-oscillator model indicates that EIA by the phase-retarded coupling occurs due to constructive interference in the scattered fields of the particles. By employing the finite element method, we demonstrate that the absorption of the plasmonic particle is dramatically enhanced by tuning the interparticle distance and achieving constructive interference. In contrast to EIA by near-field coupling, which has been intensively researched using coupled plasmonic systems, EIA by a phase-retarded coupling enables us to strengthen the absorption of plasmonic systems more significantly. This significant absorption enhancement is expected to be beneficial to advancing various applications, such as energy harvesting and radiative cooling.