Login / Signup

Laccase-Catalyzed Synthesis of Low-Molecular-Weight Lignin-Like Oligomers and their Application as UV-Blocking Materials.

Jieyan LimBarindra SanaRanganathan KrishnanJayasree SeayadFarid J GhadessySatyasankar JanaBalamurugan Ramalingam
Published in: Chemistry, an Asian journal (2018)
The laccase-catalyzed oxidative polymerization of monomeric and dimeric lignin model compounds was carried out with oxygen as the oxidant in aqueous medium. The oligomers were characterized by using gel permeation chromatography (GPC) and matrix-assisted laser desorption ionization time-of-flight mass spectroscopy (MALDI-TOF MS) analysis. Oxidative polymerization led to the formation of oligomeric species with a number-average molecular weight (Mn ) that ranged from 700 to 2300 Da with a low polydispersity index. Spectroscopic analysis provided insight into the possible modes of linkages present in the oligomers, and the oligomerization is likely to proceed through the formation of C-C linkages between phenolic aromatic rings. The oligomers were found to show good UV light absorption characteristics with high molar extinction coefficient (5000-38 000 m-1  cm-1 ) in the UV spectral region. The oligomers were blended independently with polyvinyl chloride (PVC) by using solution blending to evaluate the compatibility and UV protection ability of the oligomers. The UV/Vis transmittance spectra of the oligomer-embedded PVC films indicated that these lignin-like oligomers possessed a notable ability to block UV light. In particular, oligomers obtained from vanillyl alcohol and the dimeric lignin model were found to show good photostability in accelerated UV weathering experiments. The UV-blocking characteristics and photostability were finally compared with the commercial low-molecular-weight UV stabilizer 2,4-dihydroxybenzophenone.
Keyphrases
  • aqueous solution
  • mass spectrometry
  • room temperature
  • high resolution
  • computed tomography
  • anti inflammatory
  • solid state
  • dual energy