Login / Signup

The original boneheads: histologic analysis of the pachyostotic skull roof in Permian burnetiamorphs (Therapsida: Biarmosuchia).

Zoe T KulikChristian A Sidor
Published in: Journal of anatomy (2019)
Thickened, pachyostotic skulls are best known in pachycephalosaur dinosaurs, but evolved convergently in Permian burnetiamorphs as well as in some other stem-mammal groups and Triassic archosauromorphs. Until now, only pachycephalosaur domes have been histologically sampled to reveal patterns of bone tissue microstructure and growth. Using computed tomography and osteohistology, we serially thin-sectioned one of the smallest burnetiamorph skull caps ever recovered (estimated skull length = 10 cm), as well as an individual nearly twice as large, and here report the first cranial histological data from this clade. We recognize four highly vascularized histological zones visible in coronal thin-sections, only one of which shares morphological similarities with the tripartite zonation previously reported in pachycephalosaur domes. Zone A forms the endocranial region of the skull cap and records disorganized primary osteons in a fibrolamellar complex. Zone B preserves a border of compact, avascular layers of parallel-fibered bone surrounding an interior of partially remodeled vascular canals. Interestingly, the outline of Zone B resembles the shape of an incipient skull roof. Zone C forms the thickest portion of the skull cap and is composed of fast-growing woven bone with minimal osteonal development. The superficial Zone D has a matrix of predominantly woven bone with narrower primary vascular canals than in deeper regions of the skull caps. Unlike in pachycephalosaurs, where primary vascular porosity is thought to decrease through ontogeny, both burnetiamorph skull caps preserve a thick Zone C of highly vascularized tissue. Additionally, the remnants of sutures are visible as radial struts that taper superficially, leaving no trace on the surface of the skull. Even in the smallest individual, the sutures are closed ectocranially, which is unusual, given that some large, presumably adult pachycephalosaur domes preserve open sutural gaps. Although pachycephalosaur and burnetiamorph skull domes are superficially similar, histological analysis reveals differences in their vascularity and construction that imply multiple evolutionary pathways to form an elaborate pachyostotic dome.
Keyphrases
  • computed tomography
  • bone mineral density
  • soft tissue
  • deep learning
  • minimally invasive
  • magnetic resonance
  • dna methylation
  • single cell
  • pet ct
  • heavy metals