Login / Signup

Hif-1α paralogs play a role in the hypoxic ventilatory response of larval and adult zebrafish (Danio rerio).

Milica MandicVelislava TzanevaVincent CareauSteve F Perry
Published in: The Journal of experimental biology (2019)
Hypoxia-inducible factor (Hif) 1α, an extensively studied transcription factor, is involved in the regulation of many biological processes in hypoxia including the hypoxic ventilatory response. In zebrafish, there are two paralogs of Hif-1α (Hif-1A and Hif-1B), but little is known about the specific roles or potential sub-functionalization of the paralogs in response to hypoxia. Using knockout lines of Hif-1α paralogs, we examined their involvement in the hypoxic ventilatory response, measured as ventilation frequency (f V) in larval and adult zebrafish (Danio rerio). In wild-type zebrafish, f V increased across developmental time (4, 7, 10 and 15 days post--fertilization, dpf) in response to hypoxia (55 mmHg). In contrast, the Hif-1B knockout fish did not exhibit an increase in hypoxic f V at 4 dpf. Similar to wild-type, as larvae of all knockout lines developed, the magnitude of f V increased but to a lesser degree than in the wild-type larvae, until 15 dpf at which point there was no difference among the genotypes. In adult zebrafish, only in Hif-1B knockout fish was there an attenuation in f V during sustained exposure to 30 mmHg for 1 h but there was no effect when fish were exposed for a shorter duration to progressive hypoxia. The mechanism of action of Hif-1α, in part, may be through its downstream target, nitric oxide synthase, and its product, nitric oxide. Overall, the effect of each Hif-1α paralog on the hypoxic ventilatory response of zebrafish varies over development and is dependent on the type of hypoxic stress.
Keyphrases