Login / Signup

Race Characterization of Phytophthora Root Rot on Capsicum in Taiwan as a Basis for Anticipatory Resistance Breeding.

Derek W BarchengerZong-Ming SheuSanjeet KumarShih-Wen LinRishi R BurlakotiPaul W Bosland
Published in: Phytopathology (2018)
Peppers (Capsicum sp.) are an increasingly important crop because of their use as a vegetable, spice, and food colorant. The oomycete Phytophthora capsici is one of the most devastating pathogens to pepper production worldwide, causing more than $100 million in losses annually. Developing cultivars resistant to P. capsici is challenging because of the many physiological races that exist and new races that are continuously evolving. This problem is confounded by the lack of a universal system of race characterization. As a basis to develop a global anticipatory breeding program, New Mexico recombinant inbred lines (NMRILs) functioned as a host differential for Phytophthora root rot to characterize the race structure of P. capsici populations in Taiwan. Using the NMRILs, 24 new races were identified, illustrating the utility and usefulness of the NMRILs for anticipatory breeding. Virulence of P. capsici was observed to be geographically specific and in two virulence clusters. Interestingly, all but two isolates collected in 2016 were the A2 mating type, which is a shift from the predominantly A1 mating type isolates collected prior to 2008. The NMRILs host differential provides an approach for scientists to work together on a global scale when breeding for resistance as well as on a local level for regional gene deployment. Additionally, we propose that the current race numbering system, which has no biological meaning, be supplemented with the virulence phenotype, based on the susceptible NMRILs to a given isolate. This work provides insights into the population dynamics of P. capsici and interactions within the highly complex Capsicum-Phytophthora pathosystem, and offers a basis for similar research in other crops.
Keyphrases
  • antimicrobial resistance
  • pseudomonas aeruginosa
  • escherichia coli
  • staphylococcus aureus
  • biofilm formation
  • genetic diversity
  • genome wide
  • copy number
  • quality improvement
  • gram negative
  • multidrug resistant