Login / Signup

Red Light Absorption of [Re I (CO) 3 (α-diimine)Cl] Complexes through Extension of the 4,4'-Bipyrimidine Ligand's π-System.

Nicolas MeitingerSubrata MandalDieter SorscheAndrea PannwitzSven Rau
Published in: Molecules (Basel, Switzerland) (2023)
Rhenium(I) complexes of type [Re(CO) 3 (NN)Cl] (NN = α-diimine) with MLCT absorption in the orange-red region of the visible spectrum have been synthesized and fully characterized, including single crystal X-ray diffraction on two complexes. The strong bathochromic shift of MLCT absorption was achieved through extension of the π-system of the electron-poor bidiazine ligand 4,4'-bipyrimidine by the addition of fused phenyl rings, resulting in 4,4'-biquinazoline. Furthermore, upon anionic cyclization of the twisted bidiazine, a new 4N-doped perylene ligand, namely, 1,3,10,12-tetraazaperylene, was obtained. Electrochemical characterization revealed a significant stabilization of the LUMO in this series, with the first reduction of the azaperylene found at E1/2(0/-) = -1.131 V vs. Fc + /Fc, which is the most anodic half-wave potential observed for N-doped perylene derivatives so far. The low LUMO energies were directly correlated to the photophysical properties of the respective complexes, resulting in a strongly red-shifted MLCT absorption band in chloroform with a λ max = 586 nm and high extinction coefficients (ε 586nm > 5000 M -1 cm -1 ) ranging above 700 nm in the case of the tetraazaperylene complex. Such low-energy MLCT absorption is highly unusual for Re(I) α-diimine complexes, for which these bands are typically found in the near UV. The reported 1,3,10,12-tetraazaperylene complex displayed the [Re(CO) 3 (α-diimine)Cl] complex with the strongest MLCT red shift ever reported. UV-Vis NIR spectroelectrochemical investigations gave further insights into the nature and stability of the reduced states. The electron-poor ligands explored herein open up a new path for designing metal complexes with strongly red-shifted absorption, thus enabling photocatalysis and photomedical applications with low-energy, tissue-penetrating red light in future.
Keyphrases
  • photodynamic therapy
  • quantum dots
  • risk assessment
  • magnetic resonance imaging
  • magnetic resonance
  • visible light
  • highly efficient
  • drug release
  • crystal structure