Deep learning neural networks to differentiate Stafne's bone cavity from pathological radiolucent lesions of the mandible in heterogeneous panoramic radiography.
Ari LeeMin Su KimSang-Sun HanPooGyeon ParkChena LeeJong Pil YunPublished in: PloS one (2021)
This study aimed to develop a high-performance deep learning algorithm to differentiate Stafne's bone cavity (SBC) from cysts and tumors of the jaw based on images acquired from various panoramic radiographic systems. Data sets included 176 Stafne's bone cavities and 282 odontogenic cysts and tumors of the mandible (98 dentigerous cysts, 91 odontogenic keratocysts, and 93 ameloblastomas) that required surgical removal. Panoramic radiographs were obtained using three different imaging systems. The trained model showed 99.25% accuracy, 98.08% sensitivity, and 100% specificity for SBC classification and resulted in one misclassified SBC case. The algorithm was approved to recognize the typical imaging features of SBC in panoramic radiography regardless of the imaging system when traced back with Grad-Cam and Guided Grad-Cam methods. The deep learning model for SBC differentiating from odontogenic cysts and tumors showed high performance with images obtained from multiple panoramic systems. The present algorithm is expected to be a useful tool for clinicians, as it diagnoses SBCs in panoramic radiography to prevent unnecessary examinations for patients. Additionally, it would provide support for clinicians to determine further examinations or referrals to surgeons for cases where even experts are unsure of diagnosis using panoramic radiography alone.
Keyphrases
- deep learning
- cone beam computed tomography
- convolutional neural network
- artificial intelligence
- high resolution
- machine learning
- neural network
- end stage renal disease
- bone mineral density
- image quality
- peritoneal dialysis
- chronic kidney disease
- palliative care
- prognostic factors
- newly diagnosed
- bone regeneration
- computed tomography
- electronic health record
- postmenopausal women