Login / Signup

Strong Dipole-Quadrupole-Exciton Coupling Realized in a Gold Nanorod Dimer Placed on a Two-Dimensional Material.

Huajian PangHongxin HuangLidan ZhouYuheng MaoFu DengSheng Lan
Published in: Nanomaterials (Basel, Switzerland) (2021)
Simple systems in which strong coupling of different excitations can be easily realized are highly important, not only for fundamental research but also for practical applications. Here, we proposed a T-shaped gold nanorod (GNR) dimer composed of a long GNR and a short GNR perpendicular to each other and revealed that the dark quadrupole mode of the long GNR can be activated by utilizing the dipole mode excited in the short GNR. It was found that the strong coupling between the dipole and quadrupole modes can be achieved by exciting the T-shaped GNR dimer with a plane wave. Then, we demonstrated the realization of strong dipole-quadrupole-exciton coupling by placing a T-shaped GNR on a tungsten disulfide (WS2) monolayer, which leads to a Rabi splitting as large as ~299 meV. It was confirmed that the simulation results can be well fitted by using a Hamiltonian based on the coupled harmonic oscillator model and the coupling strengths for dipole-quadrupole, dipole-exciton and quadrupole-exciton can be extracted from the fitting results. Our findings open new horizons for realizing strong plasmon-exciton coupling in simple systems and pave the way for constructing novel plasmonic devices for practical applications.
Keyphrases