Predicted Negative Ion Photoelectron Spectra of 1-, 2-, and 9-Cyanoanthracene Radical Anions and Computed Thermochemical Values of the Three Cyanoanthracene Isomers.
Kie T WorkmanAidan J UsherDusty W HensonNolan J WhiteWilson K GichuhiPublished in: The journal of physical chemistry. A (2023)
In this work, the negative ion photoelectron spectra of 1-, 2-, and 9-cyanoanthracene (anthracenecarbonitrile, ACN) radical anions, obtained via the calculation of Franck-Condon (FC) factors based on a harmonic oscillator model, are reported. The FC calculations utilize harmonic vibrational frequencies and normal mode vectors derived from density functional theory using the B3LYP/6-311++G (2d,2p) basis set. The removal of an electron from the doublet anion allows for the computation of the negative ion photoelectron spectra that represents the neutral ground singlet state (S o ) and the lowest triplet state (T 1 ) in each of the three ACN molecules. The respective adiabatic electron affinity (EA) values for the S o state in 1-, 2-, and 9-ACN isomers are calculated to be 1.353, 1.360, and 1.423 eV. The calculated EA of the 9-cyanoanthracene singlet isomer is in close agreement with the previously reported experimental value of 1.27 ± 0.1 eV. Calculations show that the T 1 states in 1-, 2-, and 9-ACN are located 1.656, 1.663, and 1.599 eV above the S o state. The calculated T 1 negative ion spectra exhibit intense vibrational origins and weak FC activity beyond the origins, indicating little change in geometry following electron detachment from the doublet anionic state. Upon deprotonation, the EA values of the radical isomers increase by ∼400-700 meV, resulting in neutral deprotonated radicals with EAs between 1.740 and 2.220 eV. The calculated site-specific gas-phase acidity values of ACN isomers indicate that ACN molecules are more acidic than benzonitrile.