Login / Signup

The Effect of Viscosity on the Diffusion and Termination Reaction of Organic Radical Pairs.

Xiaopei LiTasuku OgiharaManabu AbeYasuyuki NakamuraShigeru Yamago
Published in: Chemistry (Weinheim an der Bergstrasse, Germany) (2019)
The effect of viscosity on the diffusion efficiency (Fdif ) of an organic radical pair in a solvent cage and the termination mechanism, that is, the selectivity of disproportionation (Disp) and combination (Comb) of the geminated caged radical pair and the diffused radicals encountered, were investigated quantitatively by following the photolysis of dimethyl 2,2'-azobis(2-methylpropionate) (V-601) in the absence and presence of PhSD. Fdif and Disp/Comb selectivity outside the cage [Disp(dif) /Comb(dif) ] are highly sensitive to the viscosity. In contrast, the Disp/Comb selectivity inside the cage [Disp(cage) /Comb(cage) ] is rather insensitive. The difference in viscosity dependence between Disp(cage) /Comb(cage) and Disp(dif) /Comb(dif) is explained by the spin state of the radical pair inside and outside the cage and the spin state dependent configurational changes of the radical pair upon their collision. Given that the configurational change of the radicals associates the displacement and reorganization of solvents around the radicals, the termination outside the cage, which requires larger change than that inside the cage, is highly viscosity dependent. Furthermore, while the bulk viscosity of each solvent shows good correlation with Fdif and Disp/Comb selectivity, microviscosity is the better parameter predicting Fdif and Disp(dif) /Comb(dif) selectivity regardless of the solvents.
Keyphrases
  • ionic liquid
  • magnetic resonance imaging
  • room temperature
  • single molecule
  • structural basis
  • density functional theory